
 

 

  
Abstract—This paper studies the response of an electrohydraulic 

actuator (EHA) subjected to three different progressive failures 
(demagnetization of the torque motor, increment of the jack static 
friction and presence of backlash); in particular, it is focused on the 
identification of failure precursors able to give an early identification 
of progressive failures affecting the system, in order to provide tools 
that can be used to predict its remaining useful life. This kind of 
analysis belongs to a new discipline, called Prognostics and Health 
Management (PHM), that focuses on predicting the time at which a 
system or a component will no longer perform its intended function, 
estimating its Remaining Useful Life (RUL) and, then, providing an 
effective diagnostic tool that allows them to exploit a component 
until it is safe, saving money. In order to conceive an effective 
prognostic algorithm authors studied the failures effects on the 
system behaviors, identifying some details in the monitored time-
history signals that exclusively got evidence of a particular failure, 
avoiding confounding each other and allowing pointing out the fault 
level of the system. For this purpose, the authors developed a new 
EHA Monitor Model able to reproduce the dynamic response of the 
actual system in terms of position, speed and equivalent current, even 
with the presence of incipient faults. Starting from this Monitor 
Model, the authors propose a new model-based fault detection and 
identification (FDI) method, based on Genetic Algorithms (GAs) 
optimization approach and parallelized calculations, investigating its 
ability to timely identify symptoms alerting that a component is 
degrading. 
 

Keywords—Electrohydraulic actuator, fault detection algorithm, 
genetic algorithm, prognostics.  

I. INTRODUCTION 
HE actuation system is one of the most important on an 
aircraft. It effects the deflection of movable surfaces to the 

position commanded by the pilot, ensuring the controllability 
and maneuverability of the aircraft. The servoactuators convert 
the source of power (mechanical, electrical, hydraulic or 
pneumatic depending on the general concept of design) into a 
controlled motion that enables the motion of the surfaces in 
order to meet operative needs. As it can be easily noticed, this 
task is crucial and requires high reliability. Right now, the 
solution to guarantee an adequate level of reliability is 
delivered to the scheduling of a maintenance program.  
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This should guarantee that an actuation system continues to 
operate in the normal range of safety conditions. This 
approach, however may show ineffective since it doesn’t take 
count of the effective state of health of the system but only of 
predictions. In fact, it can lead on one hand to an 
underestimation of the problem in order to save money or on 
the other to overestimate it wasting resources. An alternative 
strategy could consist in monitoring the functional parameters 
of the system and to determine its state of health by observing 
the deviation of its response from the original one. This 
practice of monitoring and analyzing the system’s response 
and make an evaluation of the evolution of the fault is the 
purpose of the so called Prognosis and Health Management 
(PHM): in general, PHM aims to predict failures at an early 
stage through the monitoring of functional parameters of the 
system involved and it permits to determine the source of 
irregular behaviors [1]. The application of the PHM strategies 
typically requires the monitoring of a set of parameters in the 
form of electric signals so its application is preferred on 
electrical systems where no additional sensor is required. In 
literature, different Fault Detection and Identification (FDI) 
strategies are proposed: model-based techniques based upon 
the direct comparison between real and monitoring system  
[2-7], on the spectral analysis of well-defined system behaviors 
performed by Fast Fourier Transform [8-9], on combinations of 
these methods [10] or on Artificial Neural Networks [11-14]. 

II. AIMS OF WORK 
The aim of this paper is to propose two different algorithms 
able to perform the diagnosis of an electrohydraulic 
servoactuator with flapper‐nozzle valve. Both the procedures 
are able to esteem the real state of damage of the system 
returning a plausible damage condition that consists in three 
dimensionless parameters corresponding to the three fault 
modes studied (demagnetization of the torque motor, 
increment of the jack static friction and presence of backlash). 
While the first procedure uses a deterministic approach, the 
second one makes use of a genetic solver. Both the methods, 
however, work following the same philosophy. The prognostic 
analysis in fact is carried out by comparing the response 
provided by the reference model and the one given by the 
monitoring model using a well-defined command sequence.  

The parameters of the monitoring model are iteratively 
modified in order to make its response matching up the 
reference response.  
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Fig. 1 Schematic of the considered EHA layout 

The combination of parameters that accomplishes this task 
indicates the extent of damage of the system. The parameters 
that represent the amount of damage of the specific fault mode 
(respectively KGM, KFSJ, KBKL) are normalized to the border 
state of usage in operative condition, therefore, vary linearly 
from zero (original fully functioning condition) to one (limit 
damaged condition considered). The considered actuation 
system (consistent with the schematic shown in Fig. 1) is a 
typical electrohydraulic position servomechanism (SM) widely 
used both in primary and secondary aircraft flight controls. 
According to [15], the EHA consists of three main subsystems: 
1) Controller: it may be a computer, microprocessor or 

guidance system and creates a command input signal; the 
servo-amplifier (SA) provides a low power electrical 
actuating signal which is the difference between the 
command input signal and the feedback signal generated 
by the feedback transducer. The SA usually implements 
an embedded PID control logic (proportional-integral-
derivative); it must be noted that, in several applications, 
it is possible to implement more simplified control logics. 
This work is referred to simple proportional control logic. 

2) Electrohydraulic two stage servovalve (SV): responds to 
the SA low power electrical signal and controls the high 
pressure hydraulic fluid [16-17]. 

3) Hydraulic piston (symmetrical double acting linear 
cylinder subject to Coulomb friction): actuates the flight 
control surface closing the position feedback loop by 
means of a network of position transducers. 

Wider descriptions of the servomechanism employed in this 
work and of its mathematical model are shown in [9];  
this servomechanism belongs to the fly-by-wire paradigm: the 
pilot’s command depends upon transducers that express the 
pilot wishes by an electric or a digital reference signal.  
This signal is continuously compared via a feedback loop with 
the actual position of the control surface generating the 
instantaneous position error as input to the control law. So, the 
error is processed and transformed into an electric current 
operating the electrohydraulic servovalve. This valve drives an 
actuator that moves the control surface continuously pursuing 
the reduction of the error between pilot’s commanded position 
and flight surface actual position.  
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Fig. 2 Schematic of the flapper-nozzle servovalve 

The servovalve is a high performance two-stage four-ways 
valve (as shown in Fig. 2); its second stage is a closed center, 
four-way, sliding spool, while the pilot stage is a symmetrical 
double nozzle and flapper, driven by a torque motor. Since its 
natural frequency is supposed to be orders of magnitude higher 
than the desired closed loop bandwidth of the whole SM, only 
its orifices resistive effects were taken into account. 

The hydraulic linear actuator considered in the present 
paper is a double acting symmetrical one. It has been modelled 
considering inertia, viscous friction, dry friction (according to 
[18-19]) and leakage effects through the piston seals 
developing a not working flow. It is also able to take into 
account the effects due to its interactions with the mechanical 
ends of travel as well as the aerodynamic loads acting on the 
flight surface [20]. 

III. EHA COMPUTATIONAL MODELS 
In recent years computational modeling has provided an 

important tool for the evaluation of the state of health and 
behavior of systems, during both the test and the operational 
phases. As explained in the overview, this paper uses two 
different simulation models that both simulate the behavior of 
the EHA. While the first one, proposed in [9], has a level of 
accuracy higher and it’s used to get the reference data, the 
second one it’s quicker and less demanding and it’s used to 
make the iterative process of optimal solution research. Both 
models used in this paper are developed on the platform 
MATLAB-Simulink® 2016b release. 

A. EHA Reference Model 
Figure 3 represents the detailed Simulink numerical model 

used in the following EHA failure analysis (described in 
chapter 4) and to get the reference data during the optimization 
task (chapter 5). This numerical model takes into account 
several details that contribute to the deterioration of the 
actuation chain, like, in particular, the effect of the clogging of 
the first stage filter of the SV and the rising progressive loss 
gain on the torque motor. In addition, it is also able to simulate 
the effect of disturbing noises provoked by external electro-
magnetic sources that interfere with the command input signal 
from the control module to the valve. 
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Fig. 3 Simulink block diagram of the considered EHA

The proposed Simulink model is made up of several parts: 
1) The Input block, used to define the time history of the 

input (reference position in close-loop test and command 
to valve in open-loop test). 

2) The PID block, simulating the behavior of the 
servomechanism controller. 

3) The Torque Motor model calculates the mechanical 
torque acting on the SV first stage. 

4) The third order dynamic model that reproduces the 
dynamic response of the flapper-nozzle valve. 

5) The fluid-dynamic SV block, which for a given spool 
position and flow rate returns the amount of differential 
pressure to the chambers of the actuator, using the 
linearized theory (Jacazio and Borello, 1987). 

6) The second order block simulating the dynamic response 
of the linear actuator. 

The general view of the model reflects the block diagram of 
a closed loop controlled system. In fact, the external loop of 
the scheme supplies the instantaneous position of the jack that 
has to be subtracted to the input signal (standard or given by 
the user), allowing to calculate the error signal that represents 
the true input to the system. This signal is processed by the 
PID controller that it’s responsible to stabilize the dynamic of 
the response. This signal, once substracted the result of the 
multiplication of the actual value of velocity by the gain of the 
control GAS (second closed loop), enters the hysteresis block.  

This block provides the possibility of introduce a 
contribution of contrived electrical current, dependently on the 
previous value of current in output; going on, the so obtained 
input current is supplied to the valve. The task of this block, 
divided into two elements representing the two stages of the 
flapper-nozzle servo-valve, is to simulate the third order 
dynamic of the valve. The spool position is used as input in the 
following Fluid dynamic SV block to estimate the amount of 
differential pressure supplied from the valve. In fact, the Fluid 
dynamic SV block reproduces the dynamic of the fluid that 
concerns the opening of the orifices that feed the actuator; 
through the internal closed loop, this block receives also the 
value of the fluid’s flow rate corresponding to the previous 
step analysis. This is provided multiplying the calculated 
velocity of the jack with its surface. This operation doesn’t 
take care of the negligible effect of the system compressibility 
(i.e. pipelines and hydraulic connections, hydraulic fluid).  

The differential pressure just obtained is multiplied by the 
jack’s surface area and supplied to the second order module 
that reproduces the dynamic of the actuator. This block takes 
into account the effects of ends-of-travels and dry friction 
acting on the final actuator, making cinematic evaluations. 
Results regarding different signals calculated within this model 
are delivered to the MATLAB® workspace in order to 
proceed with further calculations and tasks. The main aim of 
the proposed model is to simulate the dynamic response of the 
EHA for different health conditions (i.e. various combinations 
of SV first stage torque motor gain loss and dry frictions or 
backlashes). To this purpose, the authors developed a new 
detailed numerical model able to simulate its dynamic 
response, taking into account the effects of the said failures. Its 
dynamic fluid model (which calculates the delivery differential 
pressure regulated by the SV as a function of the spool 
position and the oil flow disposed of through the valve) has 
been conceived according to numerical models proposed in 
[21] and validated by comparing with experimental, analytical 
and numerical results found in literature [22-27]. 

B. EHA Monitoring Model 
The proposed detailed EHA reference model, as explained 

in the previous paragraphs, is able to simulate the dynamic 
behavior of an actual electro-hydraulic servomechanism taking 
into account the effects due to command inputs, environmental 
boundary conditions and several failures; therefore, it allows 
simulating the dynamic response of the real system evaluating 
the effects of different faults and testing new diagnostic and 
prognostic strategies. In order to conceive a smart system able 
to identify and evaluate the progressive failures, the authors 
propose a new method able to identify the health condition of 
the real EHA by comparing its dynamic response with the 
corresponding one provided by a simpler monitoring model 
properly designed: practically, the proposed FDI algorithm 
compares the two dynamic responses (EHA detailed model vs. 
monitor, calculated for the same command inputs and 
boundary conditions) identifying the value of appropriate 
coefficients of the monitoring model that minimize the 
quadratic error and, subsequently, correlates them with the 
actual amount of the corresponding damages. To this purpose, 
on the basis of the algorithm proposed in [9], a new EHA 
monitoring model has been developed.  
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It must be noted that this monitor represents a simplified 
version of the detailed EHA numerical model having the same 
logical and functional structure; such a model, with respect to 
the detailed one, is able to give similar performance (although 
less detailed) requiring less computational effort and more 
reduced computational time. The main difference between the 
two models however is the implementation of the valve, in 
particular the block representing the first stage. This stage in 
fact has been represented from an external point of view 
without considering the real physics events, but considering 
the first stage as a second order dynamic system. 

IV. EHA FAILURES ANALYSIS 
While in perfect conditions an original component responds 

ideally, when there’s a failure the response may change even 
drastically, affecting the performance of the system. The 
deterioration of the response can be evaluated by looking at 
characteristic parameters of the dynamic response in the 
domain of time and frequency. Of all the different failures that 
can manifest on EHA, this paper analyzes three of them: 
demagnetization of the torque motor [28], increment of the 
jack static friction [9] and presence of backlash [19-20].  

At the beginning every fault has been studied singularly, 
commanding different command sequences (step, ramp, 
sinusoidal) and analyzing different output signals (position of 
the jack XJ, velocity of the jack DXJ, position of the spool 
XS, differential pressure P12 and current Cor) varying the 
adimensional coefficients KGM, KFSJ, KBKL. Once identified 
one or more combinations of command-signals able to point 
out the presence of each fault, it has been carried out a 
complete analysis in which the three faults have been 
superimposed (taking also into account the effects of eventual 
mutual interactions between these failures).  

This study has been necessary since the three faults can 
appear simultaneously on the real system, making fundamental 
to consider their mutual influence. Through this analysis, it 
was possible to verify the effectiveness of the thresholds of the 
prognostic parameters obtained by the study of the aforesaid 
single failures. 

A. SV Torque Motor Demagnetization 
The study of the demagnetization of the torque motor has 

been led working on the torque motor gain GM, varying it 
between its nominal value and a maximum failed condition in 
which it is reduced by 50%. The obtained numerical results 
show that the step command is the most effective in the 
prognosis of this failure. Among all the parameters analyzed 
the most efficient results to be the jack position, in particular 
its overshoot; in fact, the overshoot decrease significantly in 
magnitude when KGM grows as it can be observed in Fig. 4, 
where this detail has been pointed out. It must be noted that, in 
case of progressive demagnetization of EHA torque motor, the 
response of the system becomes slower and this is due to the 
motor that, being unable to give a sufficient torque, seals the 
SV orifices partially, reducing the differential pressure on the 
spool and making the system slower and more damped. 
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Fig. 4 Particular of EHA step position response 

in case of progressive torque motor gain loss GM 
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Fig. 5 Particular of the P12 differential pressure response 

(due to a ramp position command in case of dry friction FSJ) 
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Fig. 6 Particular of the EHA ramp position response  

parametrized for increasing backlash BKL 

B. Dry Friction acting on Linear Actuator 
In EHA the static friction force is typically produced by the 

wear of the sliding surfaces of the cylinder which provokes the 
rise of the corresponding amount of friction that acts on the 
jack. Numerical results show that, in this case, the ramp 
command is the most effective input. As shown in Fig. 5, 
among all the effects caused by the rise of FSJ, such as the 
delay of the cue of XJ or the increase of the peak of DXJ, the 
most significant is the increase of differential pressure P12 
acting on the linear hydraulic actuator during the said ramp 
actuation.  
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It must be noted that, in the differential pressure diagram 
(Fig. 5), this phenomenon causes both the increase of the P12 
peak during the breakaway and the increase of its stationary 
value (i.e. when the actuator reaches the commanded speed). 

C. Backlash 
EHAs are often affected by another progressive failure, 

typically due to mechanical wear phenomenon, called 
“backlash” (although, machining tolerances and mounting 
errors may determine an initial value of such mechanical play): 
this fault, allowing a discrepancy between motor and user 
position, is characteristic of the mechanical cinematic 
transmission which connects the linear hydraulic actuator with 
the final user (e.g. aerodynamic surfaces) and plays an 
important role in the stability and accuracy of the whole 
servomechanism. Among all the command sequences used, the 
ramp shows the most significant results even if, differently 
from the other faults, different possible prognostic parameters 
have been identified. The presence of this little dimensional 
difference between the two coupled elements causes a delay in 
the response of the system that affects several output signals. It 
can be noticed in the XJ graph, for example, how the system 
starts moving increasingly later as the backlash grows up (as 
shown in Fig. 6). Also the time interval between the peak of 
pressure that should move the jack and the effective cue 
becomes greater because there is a bigger free space that has to 
be routed before the motion could be transmitted; similarly the 
DXJ gives evidence of this behavior presenting an increasing 
value of the peak as the backlash grows up. Another important 
feature that must be considered is the peak of current: in fact, 
as shown in Fig. 7, the current peak generated during the 
system breakaway becomes higher and delayed; this is due to 
the increased delay in the EHA time response. 
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Fig. 7 Particular of the breakaway EHA peak current 

in case of ramp command and increasing backlash 

D. Combined Faults 
Given that the three progressive failures analyzed in the 

previous paragraph may appear simultaneously on the real 
system, it is necessary to consider their mutual influence and 
their effects on the effectiveness of prognostic algorithms. For 
this reason the previous analysis must be completed 
considering simultaneously all the three faults. 

In this paragraph will be presented the method used to have 
a first, rough, indication of the real state of damage. This 
procedure gives a valuation of which faults are present in the 
component by using the prognostic parameters presented 
above. This first evaluation, even if very low in precision since 
it points out only the presence of a fault and not its magnitude, 
will be useful in the following optimization task carried out by 
the algorithms presented in chapter 5. The command sequence 
used in this analysis is a combination of ramp and step 
commands, those that have shown the most interesting results 
in the previous study. In order to discriminate the case in 
which the prognostic value starts giving evidence of the 
presence of a fault, it’s necessary to identify a threshold for 
each parameter. These thresholds have been chosen on the 
basis of results gained by simulations with a 20% of damage.  

Choosing a value slightly smaller than the one calculated in 
those simulations assures to point out situations where the fault 
has a magnitude big enough to start giving problems. 

V. EHA FAULT DETECTION AND IDENTIFICATION 
In this chapter all the knowledges and results obtained will 

be used to create two reliable procedures able to esteem the 
real state of health of the electro-hydraulic servo actuator with 
flapper-nozzle valve. The first method will use a deterministic 
approach while the other a heuristic one. The general logic 
followed by these two procedures, however it’s the same. 

The proposed procedures are model-based and evaluate the 
EHA health status by comparing the dynamic responses of the 
two MATLAB-Simulink® models described in chapter 3. 
The detailed model will provide the reference response and 
will be considered as real system: it will be run implementing 
different combinations of faults in order to verify the 
procedure for different conditions. The simplified model, on 
the other hand, will be processed by the optimization tool in 
order to esteem the faults’ conditions actually implemented in 
the previous one; being executed many times as it’s requested 
by the iterative process carried out by the optimization 
algorithms, the second model must be lighter than the other, as 
already pointed out earlier. Given that the final purpose of this 
paper is to propose a new FDI automatic procedure that, 
confronting the responses of these two models, identifies the 
faults in the aforesaid monitoring MATLAB-Simulink® model 
(in order to obtain the corresponding amount of the real faults 
constants), it’s crucial to find a feasible approach to evaluate 
each progressive fault independently.  

For this reason the considerations reported in chapter 4 
regarding the different ways in which each fault influences the 
response of the system, will be now resumed to create the 
fitness functions that will be minimized by the optimization 
algorithms. Monitoring the details of the response that 
discriminate the presence of one fault, the algorithm, through 
its iterative process, can provide a reliable esteem of the 
magnitude of the faults that are present or not.  

The general logic followed by the used optimization 
algorithms can be resumed by the following figure: 

INTERNATIONAL JOURNAL OF MECHANICS Volume 13, 2019 

ISSN: 1998-4448 25



 

 

 
Fig. 8 Flowchart of the proposed GA based prognostic algorithm 

Varying the three constants of damage Ki (i.e. numerical 
parameters KGM, KFSJ, KBKL suitably implemented into the 
EHA monitoring model in order to simulate the effects of the 
considered progressive failures), the optimization algorithm 
aims to minimize the fitness functions related to examined 
faults; once responses of the reference and simplified models 
match well, the algorithm has ended its task and, through the 
values of the said constants of damage (used to accomplish this 
result), it is possible to esteem the actual EHA health status. 
This algorithm is implemented by MATLAB−Optimtool®. 
As already stated in chapter 4, not all the commands give the 
same evidence of a physical phenomenon: for this reason, the 
FDI process will be carried out commanding to the MATLAB-
Simulink® models the particular sequence of commands 
shown in Fig. 9. 
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Fig. 9 Position Command input used to perform the FDI analysis 

Each section of this sequence has a precise purpose and 
utility in the prognostic analysis. The first half of the command 
time-history (from 0 to 1.5 seconds) it’s the same already 
discussed in chapter 4 and it’s the part intended to point out 
the presence of the three faults evaluated in this paper.  

This section of the command history is in turn composed of 
two parts The first part is a ramp command with a slope of 5 
mm/s that starts at 0 second and ends after 1 second: it is used 
to identify and quantify FSJ and BKL faults. The second part, 
on the other hand, it’s a step command that reaches the 
magnitude of 0.01 m and allows identifying the presence of 
demagnetization of the torque motor.  

The second half of the time history command (from 1.5 
seconds to the end of the simulation), is composed of a step 
command at 1.5 seconds that bring back the system to the 
initial condition and a sinusoidal command at variable 
frequencies that starts at 1.8 seconds: from 1.8 to 2.5 seconds 
the frequency is 2.5 Hz, so (from that moment until the end of 
the simulation) it grows up to 4 Hz. These sinusoidal inputs 
are implemented to improve the results of the proposed FDI 
genetic based algorithm; further details about this choice will 
be provided later in the corresponding section. 

A. Deterministic Algorithm FDI Method 
The deterministic technique works calculating in specific 

point the corresponding fitness value, starting from a point 
provided by the user. This method test different points in the 
around of the instantaneous reference point and, considering 
the variation of the fitness value, evaluates the gradient of the 
fitness function along the possible variables. This process is 
very suitable for fitness functions without significant 
discontinuity, marked relative minima and too many variables.  

Firstly, each part of the complete algorithm has been 
verified controlling its effectiveness; the separate analysis of 
each fault has been carried out taking advantage of the results 
obtained in the previous chapters. In fact, the fitness functions 
elaborated by the proposed FDI algorithm use the EHA 
response characteristics that showed the most interesting 
results (i.e. peak of P12 for FSJ, peak of XJ for GM, peak of 
DXJ for BKL), searching them in the sections of the command 
where they have the greatest impact (i.e. ramp command for 
FSJ and BKL, and step for GM). The task to find the minimum 
of the fitness functions is entrusted to the Fminsearch 
optimization method in the FSJ and GM analysis and to 
Fmincon in the BKL case [29-30]. While Fminsearch doesn’t 
require bounds, but only an initial point x0, Fmincon is a 
constrained method; it must be noted that, especially in case of 
backlash nominal condition (KBKL=0), these constraints results 
very helpful, avoiding to assign negative values to the backlash 
(values that have no physical sense since it would mean that 
the mechanical elements interpenetrate). For instance, Table 1 
shows the results obtained by the proposed preliminary FDI 
analysis for different test cases. 

 
Table 1: FDI results in case of a single fault conditions  

(preliminary deterministic procedure) 

Real 
KFSJ 

Estimate 
KFSJ 

Real 
KGM 

Estimated 
KGM 

Real 
KBKL 

Estimated 
KBKL 

0,0 0,00084 0,0 0,02094 0,0 0,00000 
0,4 0,40083 0,4 0,40269 0,4 0,39891 
0,6 0,60081 0,6 0,60213 0,6 0,60365 
1,0 1,00080 1,0 1,00240 1,0 0,99000 

 
As it can be seen, the percent errors calculated between the 

values estimated by the algorithms and the ones implemented 
in the reference model are always less than 1%, being very 
accurate in the FSJ case (less than 0,1 %). 
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All these considerations confirm the effectiveness of the 
procedure and allow to move forward to the following step, the 
creation  of the complete procedure. Instead of running each 
algorithm on its own now it’s necessary to make them 
cooperate since the actuator can perform all three faults 
simultaneously. For this reason the three algorithms work in 
series, running one after another. Doing this way it’s possible 
to use what already found by one algorithm to improve the 
effectiveness of the following. Not only the results, but also 
the time spent on accomplishing the prognostic task improve 
step by step; in fact, the evaluation of the final fault results less 
demanding than the first one. The complete procedure starts 
from the evaluation of FSJ. Since the control is made in close 
loop the command of the valve is an error signal that directly 
derives from the instantaneous discordance between the 
commanded position and the real position of the jack. This is 
deeply influenced by FSJ that, for this reason, must be 
analyzed firstly. After that, using the KFSJ just found, the 
procedure calculates the GM and finally, using all these 
results, estimates BKL. This fault has been analyzed lastly, 
since it’s the most difficult to evaluate, as already pointed out 
in chapter 4. In fact, BKL acts similarly to FSJ and this make 
its prognostic very demanding; therefore it is suitable to 
calculate it when the algorithm has already information about 
the other faults. The results of the complete deterministic 
procedure can be seen in the following chapter. 

B. Genetic Algorithm FDI Method 
The proposed FDI prognostic algorithm is based on a 

heuristic method that applies Darwin’s evolutionary theory to 
optimize processes. Operatively speaking, the Genetic 
Algorithm (GA) technique iteratively generates a population of 
eligible solutions in order to evolve its individuals toward a 
better solution; each eligible solution (fault combination) has a 
set of properties, corresponding to the genotype, which can be 
mutated and altered. Traditionally, solutions are represented in 
binary as strings of 0 and 1, but other encodings are also 
possible. The fittest individuals of the last generation are 
stochastically selected, and each individual feature is modified 
by recombining the genome (crossover) or by randomly 
mutating (mutation) to create a new generation. 

2
__ )( EHAi

i
Monitori XJXJFF ∑ −=  (1) 

The fitness function (1), in addition to comparing the details 
of the signal responses shown in previous chapters, also 
calculates the quadratic difference of the XJ responses 
provided by the reference and monitoring models during the 
second half of the simulation, where a double frequency 
sinusoidal input is commanded, in order to avoid that the 
genetic algorithm finds a “twin cases” in which different 
combinations of fault cause the same dynamic response: in 
fact, using a double frequency sinusoidal input instead of a 
simpler monochromatic harmonic input, the risk to declare 
false positive o twin cases decreased drastically (avoiding false 
EHA warnings or, vice versa, undetected incoming failures).  

Before showing the results obtained during this analysis, it’s 
useful to look to the settings of the genetic algorithm. Unlike 
what happens in the case of the Matlab Fminsearch method, 
GAs approach requires to declare the starting point (set to 0.5) 
of the different constants of damage Ki and, in addition, the 
values of their bounds. It has been chosen to study the 
complete field of the solutions giving 0.0 as lower bound and 
0.99 as upper bound. These bounds, giving a huge range in 
which GAs can search the solution, ensure the validity of the 
algorithm. The gaoptimset offers also other features where the 
user can personalize its algorithm: Table 2 summarizes them 
and shows the parameters chosen in this work. 

 
Table 2: Proposed gaoptimset features 

gaoptimset 
feature Description Parameter 

implemented 

Stall Generation Limit 

The procedure stops if the 
average relative change in the 
best fitness function value 
over the entire process is less 
than or equal to the function 
tolerance 

10 

Tolfun 

The algorithm stops if the 
average relative change in the 
best fitness function value 
over the generations set by the 
user is less than or equal to the 
function tolerance 

0,0001 

Initial Population Data 
Sets the point in the field of 
the solutions where the 
algorithm starts its research 

0.5 

Population Size 
This parameter sets the 
number of individuals 
considered during the analysis 

20 

FitnessScalingFcn Allows the user to choose the 
function that scales the values 

Proportional 
scaling factor 

Number of Generations 
This parameter sets how many 
generations the procedure will 
consider 

20 

Hybrid function 

Through this parameter it’s 
possible, after the last step of 
the genetic process, to use a 
deterministic algorithm 

Fmincon 

 
The promising results obtained in this phase allow to 

proceed to the next step, the complete analysis. Unlike the 
aforesaid deterministic routine, the proposed GA method 
simultaneously analyzes the three progressive failures using a 
new fitness function that, fundamentally, constitutes the 
synthesis of the three previously developed objective 
functions. In fact, this fitness function sums the three different 
parameters that identify the three faults: the absolute difference 
between the peaks of differential pressure P12 (used to identify 
FSJ), the absolute difference between the peaks of the dynamic 
response of the jack position XJ (GM) and the absolute 
difference between the peak of actuation speed DXJ (BKL).  

This fitness function takes into account also the quadratic 
difference, calculated between the corresponding EHA actual 
positions, obtained during the sinusoidal actuation commanded 
in the second half of the proposed input sequence. This is due 
to the necessity of discriminate “twin cases” in which different 
combinations of faults lead to the same response.  
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As in the deterministic procedure, the results of the 
complete analysis are shown in chapter 6. Table 3 shows the 
results obtained by the proposed genetic FDI method 
considering the single failure conditions. 

VI. FDI TESTING 
In order to verify the robustness of the proposed FDI 

prognostic algorithms and their effectiveness in case of 
combined faults, a series of tests were implemented. The 
values of the progressive faults used to test the behavior of the 
proposed FDI algorithms have been arbitrarily chosen so as to 
cover all possible fault conditions (both single and combined 
ones) related to the prognostic application field (i.e. the 
failures range within which the proposed prognostic algorithms 
must be able to correctly detect and evaluate these progressive 
faults). The robustness of the proposed algorithms have been 
tested not only using realistic combinations (such as those 
where the constants of damage have values of 0.4 or 0.6) but 
also in extreme and “unrealistic” conditions, such as the ones 
with the constants equal to 0.0 (ideal condition) or 1.0 
(maximum amount of damage). In fact, in order to provide a 
wider evaluation of the robustness of the proposed FDI 
algorithms, the authors considered also results obtained in the 
case of ideal conditions (KGM, KFSJ and KBKL equal to 0.0 – 
i.e. the system is not affected by faults) and for EHA 
completely corrupted (all constants equal to 1.0). The results 
obtained in both cases (i.e. calculated using deterministic and 
GA-based methods) are reported in tables 4 and 5.  

In order to evaluate the effectiveness of these procedures, 
it’s been necessary to calculate the percent errors of each 
constant of damages and the mean error of each case.  
The percent error (% err) of the i-th constant of damage is 
calculated by means of the following expression: 

 

( )
i

ii
i K

KKerr ESTIMATED   % −
=  (2) 

 
Therefore, according to Eq. (2), a negative percentage error 

indicates an overestimation of the i-th constant of the damage, 
while a positive one is equivalent to its underestimation. 

The average percentage error (Mean % err) is calculated as: 
 

3
 % % %
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++
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Table 3: FDI results in case of single fault conditions  
(proposed GA based procedure) 

Real 
KFSJ 

Estimated 
KFSJ 

Real 
KGM 

Estimated 
KGM 

Real 
KBKL 

Estimated 
KBKL 

0,0 0,00084 0,0 0,00539 0,0 0,00047 

0,4 0,40094 0,4 0,40428 0,4 0,40415 

0,6 0,60105 0,6 0,60373 0,6 0,60503 

1,0 0,99000 1,0 0,99000 1,0 0,99000 

Table 4: FDI results in case of combined fault conditions 
(preliminary deterministic procedure). 

Case KGM KFSJ KBKL Estimated 
KGM 

Estimated 
KFSJ 

Estimated 
KBKL 

1 0,0 0,0 0,0 0,02075 0,00084 0,00000 

2 0,4 0,4 0,4 0,40944 0,40083 0,40612 

3 0,4 0,4 0,6 0,40944 0,40075 0,60851 

4 0,6 0,4 0,4 0,60775 0,40058 0,40561 

5 0,4 0,6 0,4 0,41300 0,60088 0,40794 

6 0,6 0,4 0,6 0,60781 0,40067 0,60719 

7 0,6 0,6 0,4 0,61056 0,60061 0,40835 

8 0,4 0,6 0,6 0,41306 0,60076 0,60939 

9 0,6 0,6 0,6 0,61056 0,60067 0,60811 

10 1,0 0,0 0,0 1,00230 0,00053 0,00516 

11 0,0 1,0 0,0 0,07963 1,00080 0,00543 

12 0,0 0,0 1,0 0,02081 0,00071 0,99000 

13 1,0 1,0 0,0 1,01060 1,00030 0,00701 

14 1,0 0,0 1,0 1,00240 0,00864 0,99000 

15 0,0 1,0 1,0 0,07956 1,00080 0,99000 

16 1,0 1,0 1,0 1,01060 1,00000 0,99000 
 

Table 5: FDI results in case of combined fault conditions 
(proposed GA based procedure). 

Case KGM KFSJ KBKL Estimated 
KGM 

Estimated 
KFSJ 

Estimated 
KBKL 

1 0,0 0,0 0,0 0,00531 0,00084 0,00003 

2 0,4 0,4 0,4 0,41154 0,40083 0,39830 

3 0,4 0,4 0,6 0,41214 0,40076 0,59807 

4 0,6 0,4 0,4 0,60985 0,40058 0,39765 

5 0,4 0,6 0,4 0,41546 0,60089 0,39724 

6 0,6 0,4 0,6 0,60925 0,40066 0,59761 

7 0,6 0,6 0,4 0,61303 0,60062 0,39657 

8 0,4 0,6 0,6 0,42636 0,60077 0,63025 

9 0,6 0,6 0,6 0,62888 0,60066 0,59008 

10 1,0 0,0 0,0 0,99000 0,00053 0,00070 

11 0,0 1,0 0,0 0,04776 0,98997 0,00192 

12 0,0 0,0 1,0 0,01980 0,00041 0,92500 

13 1,0 1,0 0,0 0,99000 0,99000 0,01869 

14 1,0 0,0 1,0 0,99000 0,00001 0,99000 

15 0,0 1,0 1,0 0,04350 0,99000 0,99000 

16 1,0 1,0 1,0 0,99000 0,99000 0,99000 
 
In conclusion, Table 6 summarizes the mean percent error 

obtained in both cases by applying the proposed FDI method: 
 

Table 6: FDI deterministic procedure vs FDI GA-based procedure 

FDI 
Procedure 

KFSJ 
% error 

KGM 
% error 

KBKL 
% error 

Mean 
% error 

Deterministic < 0.21 % < 2.5 %  < 2.0 % < 1.8 % 

GA-based < 0.21 % < 4.0 %  < 1.0 %  < 1.6 %  

INTERNATIONAL JOURNAL OF MECHANICS Volume 13, 2019 

ISSN: 1998-4448 28



 

 

Referring again to Table 6, it should be noted that, in terms 
of percentage error, the deterministic method generally 
provides a better result (compared to the heuristic method); in 
fact, by comparing each other the maximum values of the 
percent error module calculated with these two methods, the 
latter is more accurate only in the estimate of the fault 
coefficient due to the backlash (i.e. KBKL). However, as 
reported in Tables 4 and 5, the GA-based method generally 
provides a more accurate estimate of the overall health of the 
system, resulting in lower average percentage errors. As it will 
be more widely pointed out in the next chapter, it's authors' 
opinion that both these methods provide adequate results in 
terms of FDI analysis. The deterministic procedure is faster 
and requests a lower computational effort, but the GA-based 
method is overall more reliable, generates lower average 
percentage errors and is less sensitive to the negative effects 
due to discontinuities or local minima of the fitness functions. 

VII. CONCLUSIONS AND FUTURE PERSPECTIVES 
The principal goal of this paper was to use the optimization 

tool provided by MATLAB® in order to realize reliable 
procedures to perform the partial diagnosis of an electro-
hydraulic actuator with flapper-nozzle valve. For this purpose, 
the authors examined the dynamic response of the system 
subjected to the three faults implemented (demagnetization of 
the torque motor, static friction in the jack-cylinder contact, 
backlash in the mechanical linkage between the jack and the 
mobile surfaces) in order to find details that could point out 
the presence of one of these faults. On the base of these 
results, the authors developed two different procedures: 
deterministic and heuristic. As these methods are based on 
different approaches, the development of a new FDI 
procedure, based on comparing the corresponding results, is 
reliable, robust and adequately accurate. Both the deterministic 
and heuristic procedures proposed in this paper therefore allow 
finding the current state of wear in three fundamental causes of 
faults in an electro-hydraulic servoactuator. It could be 
interesting to extend the investigation by considering other 
faults. However, this development would require some 
attention. In fact, even if in this document both procedures 
guarantee good results, in the event that the problem should 
become more complicated, the deterministic procedure could 
manifest convergence problems. In fact, since it is not able to 
solve functions characterized by strong discontinuity or 
affected by local minima, the aforementioned deterministic 
procedure could provide incorrect solutions (significantly 
compromising the accuracy of the method). On the other hand, 
genetic algorithms can easily overcome these criticalities due 
to their intrinsically heuristic nature. However, genetic 
algorithms may show other problems, e.g. be rather slow or, if 
not set correctly, give inaccurate results. For this purpose, in 
the proposed work, the performances of the aforementioned 
GAs have been improved by acting on some settings, as an 
appropriate formulation of the fitness function and the 
proportional scaling of the fault parameters implemented in it. 

It may be interesting to further integrate both procedures 
(deterministic and heuristic) together in order to achieve a 
robust approach in which the two approaches compensate each 
other (i.e. the weak points of one method are compensated by 
the strengths of the other, and vice versa). For example, it 
might be useful to evaluate the use of the deterministic 
procedure to perform a first (coarse) evaluation of the system 
health status and, therefore, adopt this data set as initial 
population of the optimization algorithm based on genetic 
algorithms, in order to accelerate the convergence of this 
heuristic procedure. Another measure that the authors intend to 
adopt in order to increase system performance consists in 
parallelizing the calculation; in fact, by subdividing the 
computational effort on the different processors, it is possible 
to fully utilize the potential of the computer and, therefore, 
perform multiple optimizations simultaneously, significantly 
reducing the overall computational time of the genetic 
algorithm. In conclusion, it is the authors' opinion that the 
proposed approach provides an adequate tool for identifying 
and assessing in good time the health status of an 
electrohydraulic servomechanism and, therefore, it can 
constitute a valid prognostic method. 
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